

Monticello PRA in Operations Training

Outline

- Background information
 - Monticello plant
 - PRA evolution at Monticello
- PRA in operations training
 - Classroom
 - Task performance
 - Simulator
- PRA composite example
- Future plans

Background information on Monticello Nuclear Generating Plant

- **■** *GE BWR-3*
- 1775 MW _t 613 MW_e
- Commercial Operation: June 30,1971
- Plant Located 45 miles NW of Minneapolis, Minnesota

Background information on how Monticello has utilized PRA

- Plant Modifications
 - Fire water crosstie to RPV
 - MSIV low level bypass switches
 - SRV/MSIV pneumatic system
- Proposed modifications
 - Gain in plant safety
- Justify continued operation
- Maintenance rule

- Quantify risk of taking equipment out of service (online and outage)
- Prioritization of maintenance activities
- Influence operating procedure changes (station blackout)
- MOV ranking
- Outage risk assessment

PRA in Operations Training

- Previous use of PRA has focused on physical plant changes and operational decision making
- In early 1997 a process was implemented in ops training that makes consistent use of the information available from the Monticello PRA to focus on improving human performance
- The intent of using PRA in operator training programs is to aid in maximizing plant safety

PRA in Operator Training Programs

Classroom

- Initial and continuing operator training programs
 - Familiarize operators with PRA
 - Fault and event trees
 - Key results
 - Introduce critical operator actions to avoid core damage that are most significant
 - System lesson plans expound on the critical actions specific to that system

Classroom (continued)

- Prioritization of systems selected for continuing training
 - PRA system importance rankings by system
 - Based on a combination of two importance measures:
 - Risk Achievement Worth
 - Fussell Vesely
 - An algorithm is maintained that uses these PRA importance weighting factors to influence the selection of topics

Job Performance Measures

- Critical operator actions modeled in the PRA are made into JPM's
 - Attachment 1
- The JPM's are used for evaluation of operator proficiency in performing a task (e.g. Align 13 diesel to supply power to battery chargers)

- Simulator scenarios for training and evaluation utilize key PRA information
- This ensures that the most probable events that lead to core damage are covered in both simulator training and crew proficiency evaluations

- Scenarios utilize the following PRA input
 - Initiating Event
 - Accident Class
 - Critical operator actions
 - Appropriate Cutset to utilize the above

Initiating event examples

- Large/Medium/Small LOCA
- Loss of condenser vacuum
- Loss of offsite power
- Loss of feedwater
- Stuck open relief valve
- Turbine trip
- MSIV closure
- Loss of a 125 VDC bus
- Loss of instrument air

Accident class examples

- Class 1A Loss of inventory makeup in which RPV pressure remains high
- Class 1B Loss of AC power and Loss of Coolant inventory makeup
- Class IC Failure to scram with loss of all inventory makeup
- Class ID Loss of Coolant inventory makeup in which RPV pressure has been reduced
- Class 2 Loss of containment heat removal
- Class 3A-D LOCA events
- Class 4 ATWS and failure to inject boron
- Class 5 Unisolated LOCA outside containment
- Class 6 Internal Flooding

Critical Operator Actions

- Critical actions as modeled in the PRA that are challenged during the scenario (e.g. operator must depressurize the RPV manually)
- Critical actions modeled in the PRA that are designed into the scenario as a result of equipment failures (e.g. Failure to initiate SBLC due to power supply problems)

Cutsets

- Accident sequence failure combination
- 40,000 cutsets in the Monticello PRA
- The individual CDFs for all cutsets are added together to obtain the total CDF estimate
- The top 178 cutsets were selected
- This resulted in 83% of the total CDF

Cutset example

- Loss of feedwater (initiating event)
- High Pressure Coolant Injection (HPCI) fails
- Reactor Core Isolation Cooling (RCIC) fails
- Failure to depressurize the RPV (critical operator action/human error)

- By concentrating on the 178 selected cutsets the scenario creator has a manageable number to use with the highest probability of occurring
- The scenario creator has the PRA information available to get down to the component failure that resulted in the system failure

- When appropriate during simulator training, the instructor will discuss the PRA inputs to the scenario
- This gives operators a perspective on what sequence of events, human errors, and equipment problems can lead to a core damaging event and what can be done to prevent getting to that point

PRA vertical slice

- Monticello submitted IPE report in 1992 to the NRC
- One of the insights from this report led to a modification to allow the plant fire system to be aligned to the RPV
 - This lowered the Monticello CDF
- This ability to crosstie fire water to the RPV is modeled in the Monticello PRA as a critical operator action

PRA vertical slice continued

- A job performance measure (JPM) was created to evaluate the ability of operators to perform this alignment
- This critical operator action is used in simulator scenarios
- Classroom training has this critical action built into the applicable system lesson plans

Other uses in Ops Training

- Prior to an outage a representative from the PRA group presents the risk timeline to all operators
 - This shows the critical points in an outage from a risk perspective